Reducibility of Pointlike Problems

نویسنده

  • J. C. COSTA
چکیده

We show that the pointlike and the idempotent pointlike problems are reducible with respect to natural signatures in the following cases: the pseudovariety of all finite semigroups in which the order of every subgroup is a product of elements of a fixed set π of primes; the pseudovariety of all finite semigroups in which every regular J-class is the product of a rectangular band by a group from a fixed pseudovariety of groups that is reducible for the pointlike problem, respectively graph reducible. Allowing only trivial groups, we obtain ω-reducibility of the pointlike and idempotent pointlike problems, respectively for the pseudovarieties of all finite aperiodic semigroups (A) and of all finite semigroups in which all regular elements are idempotents (DA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Reducibility Properties for Pseudovarieties of the Form Drh

Let H be a pseudovariety of groups and DRH be the pseudovariety containing all finite semigroups whose regular R-classes belong to H. We study the relationship between reducibility of H and of DRH with respect to several particular classes of systems of equations. The classes of systems considered (of pointlike, idempotent pointlike and graph equations) are known to play a role in decidability ...

متن کامل

Sparse Variations and Reducibility among Prediction Problems Authors :

We investigate the relationship between two di erent notions of reducibility among prediction (learning) problems within the distribution-free learning model of Valiant (PAC learning model [7, 2].) The notions of reducibility we consider are the analogues for prediction problems of the many-one reducibility and of the Turing reducibility. The former is the notion of prediction preserving reduci...

متن کامل

Self-Reducibility of Hard Counting Problems with Decision Version in P

Many NP-complete problems have counting versions which are #P-complete. On the other hand, #Perfect Matchings is also Cook-complete for #P, which is surprising as Perfect Matching is actually in P (which implies that #Perfect Matchings cannot be Karp-complete for #P). Here, we study the complexity class #PE (functions of #P with easy decision version). The inclusion #PE ⊆ #P is proper unless P ...

متن کامل

On Self-Reducibility and Reoptimization of Closest Substring Problem

In this paper, we define the reoptimization variant of the closest substring problem (CSP) under sequence addition. We show that, even with the additional information we have about the problem instance, the problem of finding a closest substring is still NP-hard. We investigate the combinatorial property of optimization problems called self-reducibility. We show that problems that are polynomia...

متن کامل

On the Reducibility of Submodular Functions

The scalability of submodular optimization methods is critical for their usability in practice. In this paper, we study the reducibility of submodular functions, a property that enables us to reduce the solution space of submodular optimization problems without performance loss. We introduce the concept of reducibility using marginal gains. Then we show that by adding perturbation, we can endow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015